skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Rao, Raghuveer M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Manser, Kimberly E.; Rao, Raghuveer M.; Howell, Christopher L. (Ed.)
  2. Manser, Kimberly E.; Rao, Raghuveer M.; Howell, Christopher L. (Ed.)
    Deep Q-learning (DQL) method has been proven a great success in autonomous mobile robots. However, the routine of DQL can often yield improper agent behavior (multiple circling-in-place actions) that comes with long training episodes until convergence. To address such problem, this project develops novel techniques that improve DQL training in both simulations and physical experiments. Specifically, the Dynamic Epsilon Adjustment method is integrated to reduce the frequency of non-ideal agent behaviors and therefore improve the control performance (i.e., goal rate). A Dynamic Window Approach (DWA) global path planner is designed in the physical training process so that the agent can reach more goals with less collision within a fixed amount of episodes. The GMapping Simultaneous Localization and Mapping (SLAM) method is also applied to provide a SLAM map to the path planner. The experiment results demonstrate that our developed approach can significantly improve the training performance in both simulation and physical training environment. 
    more » « less